Sklearn data imputation
Impute categorial and numeric features using sklearn.impute.SimpleImputer from sklearn.impute import SimpleImputer import pandas as pd df = pd.read_csv('path/to/dataset.csv') # select categorial and numeric columns categorial_columns = df.select_dtypes(include='object').columns num_columns = df.columns.difference(categorial_columns) # replace missing values using the 'most_frequent' strategy. most_frequent_imputer = SimpleImputer(strategy='most_frequent') df[categorial_columns] = most_frequent_imputer.fit_transform(df[categorial_columns]) # replace missing values using the 'median' strategy. median_imputer = SimpleImputer(strategy='median') df[num_columns] = median_imputer.fit_transform(df[num_columns])